Twitter Topic Modelling Using Latent Dirichlet Allocation Approach
Keywords:
Topic Modeling, Twitter Data, the Kanjuruhan Tragedy, LDA, Text MiningAbstract
The Kanjuruhan tragedy, a fatal incident following a football match at Kanjuruhan Stadium in Malang, Indonesia, became a trending topic on Twitter. This study applies Latent Dirichlet Allocation (LDA) to analyze 1480 Indonesian-language tweets about the tragedy, aiming to identify underlying patterns and main topics within the discourse. The analysis revealed five primary topics: the PSSI (Indonesian Football Association) investigation, suspects, the Itaewon tragedy, Korean netizens (Knetz), and the use of tear gas. These findings provide insights into public reactions and expectations, offering valuable information for stakeholders to consider in response to the incident and for future policy-making.
References
L. Liu, L. Tang, W. Dong, S. Yao, and W. Zhou, "An Overview of Topic Modeling and Its Current Applications in Bioinformatics," SpringerPlus, vol. 5, no. 1, 2016, doi: 10.1186/s40064-016-3252-8.
L. Sun and Y. Yin, "Discovering Themes and Trends in Transportation Research Using Topic Modeling," Transportation Research Part C: Emerging Technologies, vol. 77, pp. 49–66, Apr. 2017, doi: 10.1016/j.trc.2017.01.013.
G. Lansley and P. A. Longley, "The Geography of Twitter Topics in London," Computers, Environment and Urban Systems, vol. 58, pp. 85–96, 2016, doi: 10.1016/j.compenvurbsys.2016.04.002.
A. F. Hidayatullah and M. R. Ma’arif, "Pre-Processing Tasks in Indonesian Twitter Messages," Journal of Physics: Conference Series, vol. 755, no. 1, 2016, doi: 10.1088/1742-6596/755/1/011001.
H. Jelodar et al., "Latent Dirichlet Allocation (LDA) and Topic Modeling: Models, Applications, a Survey," Multimedia Tools and Applications, vol. 78, no. 11, pp. 15169–15211, 2019, doi: 10.1007/s11042-018-6894-4.
A. F. Hidayatullah, E. C. Pembrani, W. Kurniawan, G. Akbar, and R. Pranata, "Twitter Topic Modeling on Football News," in Proc. 2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya, Japan, 2018, pp. 94–98, doi: 10.1109/CCOMS.2018.8463231.
A. A. Amrullah, A. Tantoni, N. Hamdani, R. T. R. L. Bau, and E. U. Ahsan, "Review Atas Analisis Sentimen Pada Twitter Sebagai Representasi Opini Publik Terhadap Bakal Calon Pemimpin," in Proc. Seminar Nasional Multi Disiplin Ilmu & Call For Papers Unisbank, Semarang, Indonesia, 2016.
D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet Allocation," Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.
D. Blei, L. Carin, and D. Dunson, "Probabilistic Topic Models," IEEE Signal Processing Magazine, vol. 27, no. 6, pp. 55–65, Nov. 2010, doi: 10.1109/MSP.2010.938079.
I. M. K. B. Putra and R. P. Kusumawardani, "Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA)," Jurnal Teknik ITS, vol. 6, no. 2, pp. C151–C155, 2017.
Y. Sahria, "Analisis Topik Penelitian Kesehatan di Indonesia Menggunakan Metode Topic Modeling LDA (Latent Dirichlet Allocation)," Jurnal Rekayasa Sistem dan Teknologi Informasi (RESTI), vol. 4, no. 2, pp. 336–344, 2020.
M. Cendana and S. D. H. Permana, "Pra-Pemrosesan Teks Pada Grup Whatsapp Untuk Pemodelan Topik," Jurnal Mantik Penusa, vol. 3, no. 3, pp. 107–116, 2019.
C. Sievert and K. Shirley, "LDAvis: A Method for Visualizing and Interpreting Topics," in Proc. 2014 Workshop on Interactive Language Learning, Visualization, and Interfaces, Baltimore, MD, USA, 2014, pp. 63–70, doi: 10.3115/v1/W14-3110.
Negara, E. S., Triadi, D., & Andryani, R. (2019, October). Topic modelling twitter data with latent dirichlet allocation method. In 2019 International Conference on Electrical Engineering and Computer Science (ICECOS) (pp. 386-390)
Ostrowski, David Alfred. "Using latent dirichlet allocation for topic modelling in twitter." Proceedings of the 2015 IEEE 9th international conference on semantic computing (IEEE ICSC 2015). IEEE, 2015