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Abstract: As part of this study, we consider the problem of no stationary interaction of a viscoelastic 

cylindrical shell of limited length with a viscous fluid. To illustrate the relationship between the forces and 

displacements of the shell, the Boltzmann-Volterra heredity integral was used. In this case, general solutions of 

the linearized Navier-Stokes equations for a viscous fluid are applied. We apply the Laplace transform to the 

equations in time, and the Fourier transform in coordinates on the constrained interval. It has been established 

that with increasing time, the influence of the compressibility of the liquid manifests itself as an increase in 

displacement. 
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1. Introduction.  

The study of viscoelastic body’s dynamic reactivity to non-stationary influences is very important 

right now, and there's a lot of interest in it. It should be noted that numerical methods are often used to 

calculate bodies interacting with a medium. Along with, analytical methods make it possible to reveal 

many features of dynamic deformation that cannot be obtained numerically. Works [1, 2] are devoted 

to the study of the problem of interaction of a viscoelastic shell with a viscous compressible fluid. In 

[3-5], an axisymmetric problem is considered, and in [5, 6] the general (non-axisymmetric) problem of 

wave propagation in an isotropic homogeneous shell filled with a viscous fluid is studied. In [7], a 

solution was obtained for the plane case of no stationary interaction of a cylindrical shell with an ideal 

fluid. We look at the non-stationary interaction of a viscoelastic cylindrical shell of limited length with 

a viscous fluid in this work. The Boltzmann-Voltaire heredity integral was employed to describe the 

relationship between the shell's forces and displacements [8,9]. General solutions of the linearized 

Stokes-Navier equations for a viscous fluid are used in this situation [10, 11]. The shell motion 

equation is described using the Kirchhoff-Love assumptions. 

2. Methods. 

2.1. Problem Statements and Solution Method 

Consider the radius, length, and thickness of a viscoelastic cylindrical shell. The motion equations for 

a shell that satisfy the Kirchhoff-Love hypothesis are given in the form 
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Here  , ,z ru u u   components of the vector of viscoelastic displacements of points of the middle 

surface of the shell; E 0 and 1v  - instants modulus of elasticity and Poisson's ratio; , ,z rp p p   given 

non-stationary effects on an absolutely rigid surface; , ,rz rr rp p p    components of the stress tensor 

of a viscous fluid, taking into account compressibility;  
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, , ,z r p     parameters of the velocity field resulting from elastic shell deformations;   - 

viscosity coefficient; 1

2

3
    - second viscosity coefficient. 

Taking into account the assumption that for a thin shell, the radial stresses are equal to zero, the 

generalized Hooke's law can be written as: 
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Where R
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 - the time preceding the moment of observation;  t  - arbitrary function of time;  tREn  - 

relaxation core; nE  - instant modulus of elasticity; νn - Poisson's ratio; m, βn - material parameters.  

As the kernel of the integral operator, we will use the fractional-exponential Rabotnov function [5] 
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где  Г(j) =   1

0

exp jy y dy



 - gamma function. 

The kinematic conditions are satisfied on the surface of the deformable shell  
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We also assume that the ends of the shell have a pivotally movable support and there are no 

deformations at the initial moment of time [6]. 

In [1,2,3], a general solution of the Navier - Stokes equations for a viscous fluid was obtained. 

According to [3], we obtain  
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From (4), following the works [3,4,12], we obtain the representation of the components of the velocity 

vector through the potentials  
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For non-stationary problems, the solution of equations (5) will be sought in the form  
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We apply the integral Laplace transform with respect to time t and the Fourier transform with respect 

to coordinate z to equations (5) on a finite interval [8]. Then equations (5), taking into account 
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   and    Fourier and Laplace transform parameters; index FL  denotes an image of the 

corresponding size.  

     Solution of ordinary differential equations (8) with variable coefficients , represent in the form  
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where ( )mZ x   cylindrical functions.  

For potentials (5) in the image area, solutions (9) lead to the following expressions: 
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where ( )mI x  - modified Bessel functions; ( )mK x - Macdonald functions.  

Let us find a solution for the axisymmetric case ( 0)m   Translating (9) into the image area and 

substituting (10), we obtain 
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Values (11) allow us to write the load (10) due to the velocity field in the form  
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1 2 4 1 2 2 1 1 2 3

3 3

1 1
( ); ( );A k k A k k     

 
 

Here  

1 1 1 1 5 2 2 1 2 7

2

4 2 0 2 3 3 1 4 2 3

( ) ; ( ) ;

( ) ; .

k I R m k I R m

k I R m k k k k

   

 

    

     
 

If we consider the problem of the interaction of a fluid located between elastic coaxial cylinders with 

radius 1R  and 2R  1 2( )R R , then, due to the limited distance between the surfaces, in solutions (11) 

and (12) all coefficients should be preserved. 

In this case, these solutions must additionally satisfy the boundary condition on the second shell, 

which formally coincides with (12). Then 1 2 1 2, , ,A A B B  will be determined by the system  
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1 11 1 12 2 13 2 14 11 1 15 1 16 2 17 2 18 12

1 21 1 22 2 23 2 24 21 1 25 1 26 2 27 2 28 22

; ;

; ;

Ak B k A k B k Ak B k A k B k

Ak B k A k B k Ak B k A k B k

       

       
 

 

Here index 1 corresponds to a shell with radius 1R , and index 2 is for a shell with a radius 2R . As a 

numerical example, solutions of the internal interaction were studied, when surface deformations were 

caused by a change in pressure according to the law 0 0 cosp ap t     

The transition from the image to the original was carried out numerically using piecewise polynomial 

functions with the following parameter values: 
112.1 10E    Pa; 

2
4 4

1 20.58 ; 2.5 10 ; 1.86 10смv p a p a
c

        

5.0 ; 20 ; 0.20 ;R см l см h см  
 

On fig. 1 shows the change in the contour stresses of the shell from time to time for various 

thicknesses.  

 

On fig.2.shows the change in the radial contour stresses of the shell from length for a viscous 

compressible fluid (solid line) and for a viscous incompressible fluid (dashed line), respectively, at 

0.4t   and 16t    

 

Fig.2. Variation of radial contour stress on shell length 
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Conclusions  

1. Based on the Laplace and Fourier integral transformation approach, a method for estimating non-

stationary oscillations of a shell with a viscous fluid has been devised in this study. 

2. As time passes, the liquid's compressibility appears to have less of an impact. 
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